
Parallel AMR Application Development
with the SAMRAI Library

Andy Wissink & Rich Hornung

www.llnl.gov/CASC/SAMRAI
February 13, 2005
SIAM CSE Meeting

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S.
Department of Energy by University of California

Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

UCRL-PRES-209469

SAMRAI Project Members

Noah Elliott Brian Gunney

Photo
unavailable

Craig Kapfer
Andy Wissink

Rich Hornung

Steve Smith

The SAMRAI framework supports a diverse set
of AMR research efforts

Two beam laser interaction
ALPS

Richtmeyer-Meshkov instability
Hybrid Continuum Particle

Richtmeyer-Meshkov instability
ALE-AMR

� AMR dynamically increases spatial and temporal grid resolution to
resolve important local features

� SAMRAI is an object-oriented C++ framework that supports applications
investigating multi-scale phenomena.

� Framework provides high-level reusable code and algorithms shared
across a variety of applications.

Fine local mesh

Intermediate local mesh

Coarse global mesh

Structured AMR (SAMR) employs a
“patch” hierarchy

Patch
L0

Patches
L1

Patches
L2

� Hierarchy of nested “patch” levels ���� low
overhead mesh description

� Data mapped to patches ���� simple model of
data locality

� Patches cover logically rectangular index
space

Berger, Oliger, Colella

SAMRAI manages many of the
complexities of SAMR implementations

SAMRAI Provides:

� Parallel communication (MPI)

� Dynamic gridding support

� Inter-patch data transfer
operations (copy, coarsen,
refine, time int, …)

� Solver interfaces for SAMR
data (PetSc, hypre, pvode)

� Checkpointing and restart
(HDF5)

� Visualization support (VisIt)

User provides:

� (serial) numerical routines for individual patches

� Composition of SAMRAI classes to implement desired algorithm.

SAMRAI is an object-oriented “toolbox” of
classes for SAMR application development

Mesh
Management

Tool Box

Patch Hierarchy Data Transfer

Patch Data

Grid Geometry

Integration
Algorithms

Linear/Nonlinear
Solvers

Application
Utilities

Math Ops Multiblock

Hornung, Kohn, “Managing Application Complexity in the SAMRAI Object-oriented
Framework”, Concurrency Computat.: Pract. Exper. 14:347-368 (2002)

“d
ep

en
ds

 o
n”

A SAMRAI "patch" contains all data on a
box region of the computational mesh

Patch
Box Array<PatchData>

Patch Data
allocate(Box b)
copy(...)
packStream(...)
unpackStream(...)

All patch data
objects

obey the same
interface

NodeCell Face Outerface

Outernode IndexSet<TYPE> Particles Other user-
defined
types

Variable object
— defines a data quantity; type,

(centering), (depth)
— attributes:

– name (string)
– unique instance id (int)

— Variable objects generally
persist throughout
computation

PatchData object
— represents data on a “box”
— attributes:

– box
– ghost cell width

— Attributes facilitate construction
of communication dependencies

— PatchData objects are created
and destroyed as mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

SAMRAI Variable and PatchData delineate
“static” and “dynamic” data concepts

Compare with...
� Variable

— defines a data quantity
independent of mesh

— usually persists throughout
computation

� PatchData
— represents data on a “box”
— created and destroyed as

mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

Comm. Algorithm and Schedule: “static”
and “dynamic” communication concepts

� Communication Algorithm
— describes data transfer

phase of computation
— expressed using variables,

operators, …
— independent of mesh
— typically persists throughout

computation

� Communication Schedule
— manages details of data

movement on mesh
— created by communication

algorithm
— depends on mesh
— re-created when mesh

changes

� Amortize cost of creating send/receive sets over multiple
communication cycles

� Data from various sources packed into single message stream
— supports complicated variable-length data
— one send per processor pair (low latency)

Communication schedules create and
store data dependencies

Send Set Receive Set

message buffer

MPI sendCell Data (double)

Particles

packStream(...);

Continuum
representation (Euler,
Navier-Stokes) away

from interface

fluid A fluid B

DSMC representation
at interface

Adaptive Mesh and Algorithm Refinement
(AMAR) refines mesh and numerical model

� AMR is used to refine continuum
calculation and focus particles

� Algorithm switches to discrete
atomistic method to include physics
absent in continuum model

Wijesinghe, Hornung, Garcia, Hadjiconstantinou, ““Three-dimensional Hybrid Continuum-Atomistic
Simulations for Multiscale Hydrodynamics”, J. Fluid. Eng., 126:768-777 (Sept 2004).

Particles resolve molecular-scale
dynamics of mixing region

Pre-existing particle data structures
coupled to SAMRAI via patch data interface

DsmcPatchData* particles = patch->getPatchData(. . .);

particles->advance(dt);

Patch

PatchData

DSMC
PatchData

Serial DSMC
data structures

and routines

ALE-AMR combines ALE integration with AMR

Moving-deforming AMR grid

3D ICF hydro
calculation

small-scale RM
instability

Anderson, Elliott, Pember, “An Arbitrary Lagrangian-Eulerian Methods with Adaptive Mesh
Refinement for the Solution of the Euler Equations”, J. Comp. Phys. 199(2): 598-617 (2004).

� Advantages of ALE (multiple materials, moving interfaces)
� Advantages of AMR (dynamic addition & removal of mesh points)

Deforming grids in ALE-AMR managed by
specializing SAMRAI grid geometry

Manages “index
space” coordinates

Manages “physical
space” coordinates

GridGeometry

DeformingGrid
Geometry

PatchHierarchy

CartesianGrid
Geometry

Utilizes all the other
features of SAMRAI:
• parallel communication
• adaptive gridding
• solver interfaces
• etc.

SAMRAI “multiblock” capability supports
multiple patch hierarchies

Five AMR patch hierarchies
meet at single point

� Multiple index spaces
stitched together
—translations & rotations
—transparent data

communication between
hierarchies

SAMRAI supports Cartesian Embedded
Boundary grid representations

� Constructing body-fitted logically
rectangular grids is tedious and
expensive.

� Embedded boundary grids
constructed automatically in
SAMRAI
— Built from polygons or from

surface triangulation using
CUBES Cut cells

Embedded Boundary Grid

Mesh
refinement

Example
embedded
boundary mesh
constructed with
CUBES

M. Berger, Courant Inst./NASA Ames

Body-fitted grid

Gridlines
follow
building
boundaries

� IndexVariable and IndexData classes manage data
quantities on irregular index sets

SAMRAI index data supports embedded
boundary as “patch data”

IndexVariable<TYPE> ivar(“name”)
IndexData<TYPE> idata(Box& box, ghosts)

“TYPE”

Required methods
TYPE()
TYPE& operator=(const TYPE&)
getDataStreamSize(Box&)
packStream(...)
unpackStream(...)

CutCell type describes internal boundary and
state information along boundary

e.g.

“Shapefile” (Manhattan)

AUDIM applying adaptive meshing for
CFD Urban Dispersion Modeling

SAMRAI
Adaptive Meshing, embedded

boundary representation,
parallel AMR support

SAMRAI
Adaptive Meshing, embedded

boundary representation,
parallel AMR support

Triangulated surf grid

polygons

FEM3MP
FE based CFD

Dispersion model

FEM3MP
FE based CFD

Dispersion model

Eleven (Overture)
Polygonal Geometry

Representation

Eleven (Overture)
Polygonal Geometry

Representation

AMR Emb Boundary Vol MeshAdaptive CFD simulation

CUBES
(Berger)

CUBES
(Berger)

Immersed boundary methods model fluid
structure interactions

Griffith, Peskin (NYU) are developing an
electrical-mechanical heart model

combining immersed boundaries and
AMR (SAMRAI)

Fluid domain:
u(x,t),p(x,t),f(x,t)

Structure domain:
X(s,t), F(s,t)

Communication specialized for
finite-element based operations

SumTransactionCopyTransaction

Transaction
void packstream()
void unpackstream()

Ghost Cell Copy

Typically used for Finite
Difference and Finite
Volume discretizations

Node sum

“+=“

Used for element
assembly in Finite

Element discretization

Transaction::packStream()

Transaction::unpackStream()

dst
patchdata

MPI Buffer

src
patchdata

operator

� “Sum” transactions used for
finite element calculations
— Used across multiple levels

for AMR

— Node & Edge sum available

Scaled Linear Advection
Linux MCR Cluster

0

250

500

750

1000

32 64 128 256 512 1024
Processors

W
al

lc
lo

ck
 T

im
e

Ideal
Total
Time Advance
Adaptive Gridding
Other

Wissink, Hysom, Hornung, “Enhancing Scalability of Parallel Structured AMR Calculations”,
2003 Int. Conf. on Supercomputing (ICS03), San Francisco, CA, June 2003, pp. 336-347.

0

25

50

75

100

1 4 16 64 256 1024
Processors

W
al

lc
lo

ck
 ti

m
e

Measured
Ideal

Scaled Euler Hydrodynamics
IBM Blue Pacific

Non-adaptive Adaptive

SAMRAI supports applications on large
parallel platforms

Concluding remarks

� AMR is an important technology for large-scale science &
engineering problems that require greater resolution of localized
features

� New applications require expansion of current AMR methodologies
— Model refinement in addition to grid refinement
— Support for variety of data representations and non-Cartesian grids
— Complex geometries
— Efficiency on large-scale parallel architectures

� AMR libraries must effectively interoperate with other software
packages – solver libraries, grid generation packages, etc.

